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Incompressible slip flow past a semi-infinite flat plate 
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Department of Engineering Mechanics, University of Michigan 
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An asymptotic solution to the Navier-Stokes equation is obtained for the in- 
compressible flow of aviscous fluid past a semi-infinite flat plate when aslip bound- 
ary condition is applied at the plate. The results for the shear stress (and hence 
the slip velocity) on the plate differ basically from those obtained by previous 
authors who considered the same problem using some form of the Oseen equations. 

1. Introduction 
Many theoretical investigations have been made of the effect of a slip velocity 

on the flow of a viscous fluid past bodies. The problems of practical interest are 
generally in the hypersonic flow range. However, it is felt that a solution for an 
incompressible case may be of use because it is in the low Mach number range that 
experimental verification may be obtained. It is also of some academic interest 
in view of the divergence of opinion among authors as to the form of the correc- 
tion to the Blasius term for the skin friction due to slip. 

Mirels (1952) and Bell (1955) consider the linearized slip flow of an incompres- 
sible viscous fluid past a semi-infinite flat plate using a boundary-layer form of 
the Oseen equations. Lsurmann (1961) considers the same steady problem but 
uses the full linearized Oseen equations. Using the Wiener-Hopf technique he 
obtains an asymptotic solution which differs from that obtained by Mirels 
(1952) and Bell (1955); the last two give the same result. Laurmann (1961) 
thus concludes that boundary-layer theory is inadequate in that it cannot 
predict the solution at  or near the plate. He suggests that the solution to the 
Oseen equations for this type of problem will contain most of the essential features 
of the full sdution to the Navier-Stokes equations. Their results for the local 
shear stress on the plate are given in Q 3 for reference and comparison. 

In  this paper the first five terms of an asymptotic solution to the full Navier- 
Stokes equations are obtained for the steady viscous incompressible slip flow past 
a semi-infinite flat plate by extending the method and solution obtained by 
Goldstein (1956,1960) and Murray (1965) for the no-slip case. This is a boundary- 
layer (or rather a singular perturbation) approach to the problem in the strict 
sense. The extension for higher-order terms is suggested. The shear stress on the 
plate (and thus the slip velocity) is found and compared with that found by 
Mirels (1952) and Laurmann (1961) and it is shown that the Oseen equations 
possibly do not predict the same behaviour on the plate as do the Navier-Stokes 
equations. The exact form for the solution, and hence the skin friction coefficient 
cannot be found completely at this stage, since the asymptotic solution is 
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dependent on an undetermined constant, which allows this solution to be joined 
onto that valid near the leading edge. The same situation obtains in the no-slip 
case. 

The solution is obtained in parabolic co-ordinates, the optimal co-ordinates 
for the semi-infinite flat plate configuration (see Kaplun 1954). These co-ordinates 
also alleviate to some extent the difficulties encountered at the leading edge when 
Cartesian co-ordinates are used; Mirels (1952), Bell (1955) and Laurmann (1961) 
use the latter. The use of parabolic co-ordinates specifically in the problem of 
slip flow past a semi-infinite flat plate was suggested by Goldstein (1956). 

2. Differential equations and asymptotic solution 
The problem considered is that of the flow of an incompressible viscous fluid, 

of kinematic viscosity v, past a semi-infinite flat plate y1 = 0,  x1 2 0, where 
x,, y1 are Cartesian co-ordinates. An accepted slip condition (see references 
given by Laurmann 1961) is 

au 
u1= h 1  (y ,  = o,xl 2 O ) ,  

ay, 

where u1 is the velocity in the x,-direction and 

h = CMVIU, C = 1*2674(2 - u)/V,  (2) 

where M is the Mach number, U the free stream velocity, y the ratio of specific 
heats of the fluid and the plate reflexion coefficient. The role of M is that of a 
parameter only and does not imply that compressibility is taken into account. 

Introduce parabolic co-ordinates tl, 7, by 

5; = (tl+i71)2 = "r,+iy,, (3) 

where arg x1 = 0, 27r, on the upper and lower side of the plate respectively. This 
maps the x1 = (2, + iy,)-plane, cut along the real axis, onto the upper half of the 
<,-plane and so 0 < arg 5, < 7r. 

The Navier-Stokes equation for the stream function $, in parabolic co- 
ordinates t,, 7, is 

where 

The slip parameter h must appear in the co-ordinates to obtain the appropriate 
asymptotic solution, and in the usual singular-perturbation manner dimension- 
less stretched variables [, 7 are introduced by 
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An asymptotic solution for large 5 is sought. The solution near the plate must 
merge into a potential solution for 7 large and it must do so with exponentially 
small vorticity. This potential flow must merge into the free stream as ql+ co. As 
in the zero-slip case the least general potential solution into which the boundary 
layer merges is given by k1 = Im w, where, excluding a constant, 

1 
w = -<“+/3<‘+ __ [b,,,(log<’)M+b,,,-l (log<’)m-l+ +.. +bm,1bg<’+b,,J, 

(6) 
m = l  < I r n  

where the b,,j are real and 

p = 1.7208, 6’ = <e-jin = 7 - 

(see Goldstein 1960 for a discussion of this form). The expansion of (6) for large 
f [ (  (51 > 7) suggests that with 

(7) 

an appropriate asymptotic form of f(<,y) in (7) with the boundary condition 
(1) in mind is 

Pl = ( W W ( f [ , T )  = cMv<f(<,r),  

where the prime denotes differentiation with respect to 7. The form of the first 
two terms was suggested by Goldstein (1956) but the subsequent terms there are 
different. The third and fourth terms are suggested by the zero-slip solution (see 
Goldstein 1960 and Murray 1965). 

from ( 7 ) ,  the 
boundary conditions a t  7 = 0 for f ( f [ , q )  are 

From ( I )  in the co-ordinates given by (5) and the form of 

1 
f ( 5 9  0)  = 09 f& 0) = -f7& O ) ,  (9) 

26 

the first of these ensuring that there is no flow across the plate. For 5 large and 
151 > 71 comparison of (8) with (6) shows that 

f o ( ’ I )  - 2’I-P, f2(s) bl0, g,(’I) bll, (10) 

where the error terms must be exponentially small. 
Equation (4) is now written in terms of 6 and 7 as given by (5). Substitution of 

(7) and (8) into this equation and equating powers off[ gives the ordinary differen- 
tial equations for the f’s and g’s. The form of higher-order terms than given in 
(8) is clear when comparison is made with this form and the zero-slip case. Terms 
of O(<3) and also 0(g2) result in 

f[+f0fl = 0. (11) 

Terms of O(<logf[) and O(logf[) both give 

L2(g2) = 0 
and of O(<) give 
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where the operator 

Equations ( 11) and (12) are of the same form as those for the corresponding zero- 
slip case (see Goldstein 1960 and Murray 1965) while (13) is the same in form if 
CM = 1 and - ifif: is omitted from the right side. 

The form of (8) and the boundary conditions (9) imply that thef's and g's 
must have double zeros at the origin, 7 = 0. Thus with conditions (10) the solution 
of ( l l ) , fo (y ) ,  is the Blasius function where 

(14) I fo - 27-@,  @ = 1.7208, fi(0) = = 1.32824, 

fi - O(exp - (7- +/3)2). 

The form of the g, of (12) with a double zero at  y = 0 and which asymptotes to 
a constant b,, is given by Goldstein (1956) and 

92(r) = bll(7fi -fo)/P, (15) 

where b,, is as yet undetermined. 
Complementary functions of (13) with double zeros at y = 0 are, for small 7, 

and for large 7, 

where a p ,  b f ) ,  @)are constants, none of which is zero (see Murray 1965) and where 
E2 decays algebraically with leading term (7 - $/3)-' whilst H ,  is exponentially 
small. Denote by yt) the particular integral of (13) with the first square bracket 
only on the right and CM = 1, ~ ( 2 5 )  that with the second square bracket and b,, = @, 
and y:) that with - +fif{ only. Then, from (13) 

yL2' - P, y$') - $a7 + uL3) + b(231E2 + &))H2, (17) 

(18) i 
yf) - kp2y + @ )  + bi4)E2 + ci4)H2, 

yf' - up) + b',)E, + c(25))H2, 

$f' N ~ ( 2 )  + b(,6)E, + c ~ ) H , ,  

where the a, b,  and c's are constants which are non-zero. A solution for f, is then 

where A and B are constants at  our disposal to ensuref, N b,, with exponentially 
small terms. The E,  and y-terms must thus be annulled and so from (17) and (18) 

which thus determines b,, (as a function of C M )  and so 
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where A is still an undetermined constant as in the zero-slip case: it is available 
to join this solution onto a leading edge one. 

It was shown by Murray (1965) that at) ,  at ) ,  ah5), bf) ,  bf) ,  b(2) are all non-zero, 
and so the construction of f2(7) is assured. Note that the g2(q) above is not that 
given by Murray (1965) since the bl, is different in the two cases. 

f2(r) = If2(7)+A2f2(7)7 bl, = lbl0+A2blO, (21) Write 

where 

z f 2  = 7j; - fo ,  
and b,, is the square bracket in (20)  and b,, = /3. The derivatives at  r )  = 0 are 

(23) 1 &(O) = O,? 

gi(0) = b,,a/P, ft(0) = 0 = gz(0). 

, f ; ( O )  = ~r = 1.32824 = fg(O) ,  

Thus, the construction of the asymptotic solution for large 6 as given by (8) 
is assured, a t  least up to the O(log[/[3) term. In  view of the verification of the 
zero-slip case by Murray (1965) it  is likely that the solutions for the next terms in 
(8) are obtained in the same way from the higher-order terms in the zero-slip 
case with a similar assurance of analytical and numerical construction. 

To illustrate the effect of a slip velocity at  the plate it is helpful to separate 
out from the above solution the purely slip effects. We use the subscripts 0 and 
S to denote the no-slip case and the slip effects, respectively. Thus 

i (24) 

1 
A = (A)o+(A)s,  

611 = (b11)o + (b,,)s, 

92(7) = (g2(7))0 + (92(7))s, 

f 2 ( 7 )  = (f2(7))0 + (f2(7))s, 

where (b11)07 (92(7))0, ( l f2 (7 ) )0 ,  (2f2(7))0 are given by (1965). From (15), 

(191, (20), W), (2% and (241, 

( b l i ) ~  = [1/(CJfI2- 11 (b11)o -/9bf)/bb5) I (25) 
(g2(7))S = ( b l l ) S  (g2(7))07 

(fi(7))S = (lfi(7))S + (A)s(zf2(7))0, 

( l f i ( 7 ) ) S  = E1/(CJW2 - 11 ( l f i (7))O + [Y"- Y',5'b!)/bL5)1. 
In  the manner described by Murray (1965) i t  is a simple matter to compute 
yf) and hence bf) .  

3. Slip velocity and shear stress on the plate 
The slip velocity given by (1)  and the shear stress coefficient c j  require evalua- 

tion of 

With cf defined by 

f Even without calculating yf) its double derivative at 7 = 0 can be deduced by com- 
parison with yf) and yi3' which have been calculated. 

30-2 
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the shear stress on the plate is given by the last equation evaluated at 11 = 0 which 
from (3), (8) and (26) is 

where 

f{(O) g;(o)logX fl(0) g;(o)logx +--+---+- x3 +...I, 
cf = 2 ( q [ f m + ,  ux,  X2 X2 

1 u +  1 v H 1  s = = CM (;) xk = xy. 

From (23), (24) and (25) we can write cf at 7 = 0 in the form 

+terms of order smaller than l/x; , "-1 
(27) 

with a from (14) and (b,,), from (25). The first term in (27) is the Blasius term. 
The slip velocity on the plate is given by 

In the notation of this paper Mirels (1952) and Bell (1955) using the boundary- 
layer form of the Oseen equations found 

Cf = 2 4. (")+ UXl [l-? 2 (q vxl +o( (32)], 
and Laurmann (1961) using the full Oseen equations found 

c f =  ' ( - ~ ) ' [ l - - ( - ) + ~ ( l o g 3 - 0 - 0 4  A2 u 
4. ux, 2 VX1 2TX1 2v 

For small A, the correction to the Blasius term is O(h2) according to Mirels 
(1952), and O(h)  according to Laurmann (1961). However, using the full Navier- 
Stokes equations, (27) suggests that the true correction to the Blasius term may 
be of O(h210gh), or, from (2), if small h implies small M (the Mach number), 
the correction is more appropriately O[(v/Ux,) log A]. Until A,, which may be a 
function of C M ,  is determined, however, the O [ ( v / u ~ , )  log A] correction can only 
be a suggestion. Since the analysis is for incompressible viscous flow it is this 
result ( M  < 1) which may possibly be verified from experiment. 

From ( 2 ) ,  if the Mach number M is O(l) ,  Uh/v is of O(1) and in this case the 
correction from (27) is O(h1ogh) with the A, term being of O(h).  If M is large, 
Uh/v is large and the correction thus becomes O(h21og A) with the A, term being 
of O(h2).  All of these differ from previous suggestions for the correction. 

In  conclusion, even though the value of A is unknown at this stage, the cor- 
rection to the shear stress of the zero-slip case as given by (37), which is obtained 
from the full Navier-Stokes equations, suggest fundamentally different results 
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to those obtained previously, and is perhaps an indication that the use of the 
Oseen equations, in boundary-layer form or otherwise, is not appropriate for a 
study of slip-phenomena of the type considered above. The now familiar fact 
that in flows past finite bodies the second (asymptotic) term from the solution 
of the Oseen equations is not in general the second term of the solution of the 
Navier-Stokes equation tends to substantiate this conclusion and the fact that 
the skin-friction correction involves a logarithm of the slip coefficient A. 

The author would like to express his appreciation for a referee’s comment 
which resulted in a reappraisal of the implications of the final result for the skin- 
friction coefficient. 
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